
MX Record Reference Manual

William M. Lavender

September 3, 2003

2

Chapter 1

Introduction

At present, this manual is incomplete and is a work in progress.

3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Records

General description of records go here.

5

6 CHAPTER 2. RECORDS

Chapter 3

Motors

All motor records in MX support a common set of operations that are described in this chapter. We describe first the
set of record fields found in the record description string in an MX database file for a motor.

Motor records are divided into two subclasses, namely,stepperandanalogmotors. The two classes are distin-
guished by the format of the numbers used to communicate with the underlying controller. Motor controllers for
which positions, speeds, etc. are specified in integer units (steps or encoder ticks) are calledsteppermotors by MX
motor support. Motor controllers for which positions, speeds, etc. are specified in floating point units are called
analogmotors by MX motor support.

3.1 Record Fields in the Record Description

The following fields must be included in the record description for a record in an MX database file. They must appear
in the order presented below.

7

8 CHAPTER 3. MOTORS

Field Name Field Type Number of
Dimensions

Sizes Description

name string 1 16 The name of the record
mx superclass recordtype 0 0 The string “device”

mx class recordtype 0 0 The string “motor”
mx type recordtype 0 0 The name of the motor driver for this

motor.
label string 1 40 A verbose description of the record.

acl description string 1 40 Placeholder for an access control list
(not yet implemented).

raw position
long for stepper,
doublefor analog

0 0 The motor position in raw units.
Generally this value will be overwrit-
ten by the position read from the mo-
tor controller.

raw backlashcorrection
long for stepper,
doublefor analog

0 0 The MX backlash correction in raw
units.

raw negativelimit
long for stepper,
doublefor analog

0 0 The software negative limit in raw
units.

raw positivelimit
long for stepper,
doublefor analog

0 0 The software positive limit in raw
units.

raw deadband
long for stepper,
doublefor analog

0 0 The motion deadband in raw units.
A requested move is not performed
unless the difference between the re-
quested and the current positions is
bigger than the deadband distance.

raw minimumspeedlimit
long for stepper,
doublefor analog

0 0 The slowest raw speed that can be re-
quested for this motor. Negative val-
ues have special meanings. -1 means
there are no restrictions on the re-
quested raw speed. -2 means that the
speed cannot be changed.

raw maximumspeedlimit
long for stepper,
doublefor analog

0 0 The fastest raw speed that can be re-
quested for this motor. Negative val-
ues have the same meaning as for
“raw minimum speedlimit”.

scale double 0 0 The “scale” field is used together
with the “offset” field to compute po-
sitions in user units using the for-
mula: userunits = scale * rawunits
+ offset.

offset double 0 0 See the description of the “scale”
field.

units string 1 16 User units for the motor, such asum,
or deg.

3.2. MOTOR CONTROLLERS 9

An example motor record description for a “disabled motor” is shown below.

theta device motor disabled_motor "" "" 0 0 -20000000 20000000 0 -1 -1 5e-05 0 deg

The disabled motor record was chosen for this example since it has no type-specific fields.

3.2 Motor Controllers

MX currently supports a wide variety of motor controllers.

3.2.1 APS Insertion Device

3.2.2 Bruker D8

3.2.3 Compumotor 6K and 6000 Series Motor Controllers

This set of drivers supports both the Compumotor 6000 and 6K series of controllers from the Compumotor division
of Parker Hannifin. Several different MX drivers are associated with this type of controller. They are:

• compumotorint - An interface driver that manages all of the Compumotor controllers attached to a particular
serial port or Ethernet connection.

• compumotor- The basic motor driver for Compumotor controllers.

• compumotortrans - A motor driver for controlling several motors of a specific Compumotor controller as a
group. This driver is capable of simultaneous starts.

• compumotorlin - A predecessor to thecompumotortransdriver.

So far these drivers have been tested with both the 6K and Zeta 6104 controllers.

compumotor int

Not yet written.

compumotor

This motor driver handles one particular axis in a Compumotor controller. Since Compumotor interface records
support multiple controllers and axes, both the controller number and the axis number must be specified.

Go to the MX Motor Driver Support page for the common motor record description fields. For thecompumotor
driver, the following driver specific fields are present:

10 CHAPTER 3. MOTORS

Field Name Field Type Number of
Dimensions

Sizes Description

SeeCommon motor field definitions
compumotorinterfacerecord record 0 0 The name of the Compumotor

generic interface for this motor.
controller number int 0 0 The controller number for this partic-

ular motor.
axis number int 0 0 The axis number for this particular

motor in the specified controller.
flags hex 0 0 Setting particular bits in the flags

variable can modify the behavior of
the driver. The individual bit values
are specified below.

Notes

• The MX drivers assume that daisy-chained controllers are numbered from 1 to N where N is the number of
controllers. This may be done via theADDR command as described in the 6000 and 6K Command Reference
manuals. For more information look at the sections namedRS-232C Daisy-ChainingandRS-485 Multi-Drop
in the Compumotor 6000 or 6K Programmer’s Guide.

• If you use the ethernet port on a 6K controller, you will need to use the ’tcp232’ RS-232 interface type and
specify the port number to connect to as 502. There is not a lot of experience with controlling the 6K this way,
so there may be lurking bugs related to the socket I/O.

Warning: The port number seems to have changed for more recent 6K controllers. Using a packet sniffer while
the vendor supplied code for Windows is running should be able to determine the correct port number.

• The MX Compumotor drivers make certain assumptions about the internal configuration of Compumotor con-
trollers. The following figure shows an example startup script for Compmotor controllers that is compatible
with MX. The MX drivers will not operate correctly if the variablesERRLVL , EOT, andMA are not set as
shown. Also note that the setting shown forEOT means that the ’rs232’ driver must be configured with the
read and write terminators set to 0x0d0a. In addition, the settingECHO1 is required in order for multi-drop
installations to function correctly. For a single controller, you may useECHO0 which will the amount of serial
I/O required.

Bugs

At present, Zeta 6104s occasionally stop communicating with the MX driver. The exact circumstances under which
this occurs is not entirely clear. However, since most of our Compumotor usage is migrating towards the 6K series,
the need to fix this issue may become less important.

3.2.4 DAC Motor

3.2.5 Delta Tau PMAC

The PMAC series of motor controllers is manufactured by Delta Tau Data Systems of Chatsworth, CA. PMAC motor
controllers are definitely the most powerful motor controllers supported by MX. However, they are also the most

3.2. MOTOR CONTROLLERS 11

; This command script is to be downloaded into a Compumotor 6000 or 6K
; controller in order to set up the controller to be compatible with MX.
; The script sets up a startup command program to be executed by the
; Compumotor controller at power-on. The commands for ERRLVL, EOT, and MA
; _must_ be set as shown below or else the MX driver will not work.
; If you need other commands to set motor parameters, network addresses,
; and so forth, add them to the commands listed below.
;
; Please note that if you use ECHO1, you must add the 0x2 echo on flag to
; the compumotor_int record that defines the connection to the interface.
; This lets the driver know that it needs to discard echoed characters.
;
; For a single controller, it is better to set ECHO0 since that will
; eliminate the overhead of discarding the characters. However, in a
; multidrop daisy chain configuration, ECHO1 _must_ _be_ _set_ since the
; controllers rely on the echoing to send the command on to the next
; controller in the daisy chain. If ECHO0 is set in a daisy chain
; configuration, the configuration will mostly work but will randomly
; lock up from time to time, so don’t do it.
;
; William Lavender -- Last modified April 27, 2002
;
DEF mstart
ERRLVL1 ; Have the controller generate a minimum amount of output.
EOT13,10,0 ; Want all output lines to have the same line terminators.
MA1 ; Use absolute mode for positioning.
LH0 ; Disable limits (for testing only!)
ENC0 ; Use motor step mode (or set ENC1 for encoder step mode).
ECHO1 ; Enable command echoing.
END

Figure 3.1: Recommended STARTP program for MX controlled Compumotor motors.

12 CHAPTER 3. MOTORS

complicated to setup and program of all the controllers supported by MX, so they may not be the best choice for
simple applications.

The MX PMAC drivers are designed to be easily adaptable to any model of PMAC motor controller. However, so
far the drivers have been mostly used with the Turbo PMAC series of controllers. The drivers listed below currently
all operate via PMAC ASCII communication interfaces of various types.

MX has a large number of drivers for interacting with PMAC motor controllers:

pmac Interface driver for controlling one or more PMAC motor controllers
connected to an ASCII serial interface.

pmacmotor Motor driver for controlling a single motor of a PMAC controller.
pmaccs axis Motor driver for controlling a coordinate system axis belonging to a

PMAC motor controller.
pmacmce Multichannel encoder (MCE) driver for reading out any motor be-

longing to a given PMAC motor controller.
pmacainput Analog input driver for reading a floating point value from a PMAC

variable.
pmacaoutput Analog output driver for writing a floating point value to a PMAC

variable.
pmacdinput Digital input driver for reading an integer value from a PMAC vari-

able.
pmacdoutput Digital output driver for writing an integer value to a PMAC vari-

able.
pmaclong Variable driver for reading and writing signed integer values to and

from a PMAC variable.
pmaculong Variable driver for reading and writing unsigned integer values to

and from a PMAC variable.
pmacdouble Variable driver for reading and writing floating point values to and

from a PMAC variable.

MX PMAC drivers

pmac - Pmacinterface records are used to control one or more PMAC motor controllers attached to a given external
interface. An examplepmacrecord looks like

pmac1 interface generic pmac "" "" rs232 pmac1_rs232 1

which describes a single PMAC motor controller attached to MX RS-232 recordpmac1 rs232.

3.2. MOTOR CONTROLLERS 13

Field Name Field Type Number of
Dimensions

Sizes Description

SeeCommon record field definitions
port typename string 1 80 A string such asrs232 that describes the type of

PMAC interface this is. See below for more infor-
mation.

port args string 1 80 This contains port type specific information such
as the name of an RS-232 port record. See below
for more information.

numcards int 0 0 The number of individual PMAC controllers at-
tached to this interface. In most cases this will be
1. However, for a controller attached to a mul-
tidrop connection such as RS-485, this will be the
number of controllers attached to the multidrop.

PMAC ASCII command interfaces are accessible via a variety of different mechanisms such as RS-422, Ether-
net, USB, VME, etc. Since the information needed to describe the interface can vary widely from interface type
to interface type, the information needed to the interface is specified in a string calledport args. The currently
defined port types are:

port typename port args
rs232 The name of the MX RS-232/422/485 record that this PMAC interface is attached to,

such aspmac1rs232in the example above.
epicsect This port type uses the string command and response interfaces provided with the

EPICS PMAC software written by Tom Coleman of the Argonne National Laboratory
ECT group. This port type uses EPICS process variable names that are constructed by
appending “StrCmd” or “StrRsp” to the names. Thus, if the port args were “S18ID”,
then the EPICS process variables used by this interface would beS18IDStrCmd.VAL
andS18IDStrRsp.VAL.
Note: There is an alternate set of MX EPICS drivers calledpmactc motor and
pmacbio motor that is described elsewhere in this manual.

Note: It is anticipated thatethernetand maybeusbport types will be added at some point in the future.

pmac motor - A pmacmotor record refers to one particular motor in a PMAC motor controller. The motor is
controlled mostly via PMAC “jog” mode commands except for certain features not available via jog commands.

An examplepmacmotor record looks like

theta device motor pmac_motor "" "" 0 0 -10000000 10000000 0 -1 -1 0.05 0 um pmac1 0 4

which describes a motor calledtheta which belongs to controller 0, axis 4 of PMAC interfacepmac1. The
example motor uses a scale factor of 0.05µ-meters per step and raw motion limits of± 10000000 steps.

14 CHAPTER 3. MOTORS

Field Name Field Type Number of
Dimensions

Sizes Description

SeeCommon motor field definitions
pmacrecord record 0 0 Name of the PMAC interface record that controls

this motor.
card number int 0 0 Card number of the PMAC card that controls this

motor. For PMACs that are not in a multi-drop con-
figuration, the card number will normally be 0.

motor number int 0 0 The PMAC axis number for this specific motor.

pmac cs axis - A pmaccs axis record makes use of a specified coordinate system axis for a coordinate system de-
fined in a PMAC controller. PMAC coordinate systems can be thought of as a way of defining “pseudomotors”
inside a PMAC controller in a manner that is analogous to the way MX defines pseudomotors. However, PMAC
coordinate system axes are more powerful than MX pseudomotors, since for a coordinate system, the PMAC
controller is able to ensure that all of the raw motors are able to maintain their correct relative relationship even
while the motors are moving. Ordinary MX pseudomotors make sure that the real motors are at the correct
positions at the beginning and end of motor moves, but they cannot do this while a move is in progress.

Warning: This driver has not yet been tested on a real beamline.

Pmaccs axis motor records require that some preliminary setup be done in the PMAC before they may be
used. There are three primary steps in this process:

• The coordinate system that this axis is to be part of must be set up before this record may be used.

• You must write a motion program that will be run every time a move of this axis is commanded. The
motion programmust define the move destination, the feedrate (reciprocal of the speed), the acceleration
time, and the S curve acceleration times in terms of PMAC motion variables so that thepmaccs axis
driver can set them. I recommend that you use Q-variables so that variables used by this coordinate
system will not interfer with other coordinate systems used by your PMAC.

• You must arrange for the current position of the coordinate system axis to be continuously updated to a
PMAC variable that you specify. The most obvious way to do this is with a constantly running PMAC PLC
program which is set up to calculate the coordinate system axis position from the real motor positions at
all times. I would recommend that you use a Q-variable for this too. Of course, the kinematic calculation
logic of the PLC program must match the logic of the PMAC motion program mentioned above.

An examplepmaccs axisrecord looks like

det_distance motor pmac_cs_axis "" "" 0 0 200 1000 0 -1 -1 1 0 mm pmac1 0 2 Z 3 Q50 Q51 Q52 Q53 Q54

This describes a motor calleddet distancewhich corresponds to axis Z of coordinate system 2 running in card
0 of PMAC interfacepmac1. The axis performs moves using motion program 3 with position, destination,
feedrate, acceleration time, and S-curve acceleration time managed by PMAC coordinate system variables Q50
through Q54.

3.2. MOTOR CONTROLLERS 15

Field Name Field Type Number of
Dimensions

Sizes Description

SeeCommon motor field definitions
pmacrecord record 0 0 Name of the PMAC inter-

face record that controls this
axis.

card number int 0 0 Card number of the PMAC
card that controls this axis.
For PMACs that are not in
a multi-drop configuration,
the card number will nor-
mally be 0.

axis name char 0 0 The name of the coordinate
system axis used by this mo-
tor. The possible names are
X, Y, Z, ???, A, B, and C.

moveprogramnumber int 0 0 The number of the motion
program that is used to move
this axis as part of the coor-
dinate system.

positionvariable string 1 8 Name of the PMAC variable
that the MX driver uses to
read the current position of
the axis from.

destinationvariable string 1 8 The MX driver writes the
new axis destination to this
PMAC variable before start-
ing the motion program to
perform the move.

feedratevariable string 1 8 The MX driver sets the axis
speed by writing to the spec-
ified PMAC feedrate vari-
able.

accelerationtime variable string 1 8 The MX driver sets the axis
acceleration time by writing
to this variable.

s curveaccelerationtime variable string 1 8 The MX driver sets the axis
S-curve acceleration time by
writing to this variable.

Note: If all you want is basic control of the individual motors belonging to a PMAC controller, then it is
not necessary to create MXpmaccs axis motor records or coordinate systems in the PMAC. You can get
basic control of the motors with just thepmacmotor records, with much less setup required. You only need
pmaccs axisrecords if you want to make use of the special abilities of PMAC coordinate systems.

pmac mce - A pmacmcerecord is used to read out the position of a motor at the end of an MX quick scan.

16 CHAPTER 3. MOTORS

To be continued...

3.2.6 Disabled Motor

3.2.7 DSP E500

3.2.8 EPICS Motor

3.2.9 IMS MDrive

3.2.10 IMS Panther and 483

3.2.11 Joerger SMC24

This is an MX motor driver for the Joerger SMC24 CAMAC stepping motor controller, which is still available as of
August 2003, from Joerger Enterprises, Inc.

Warning: As far as I know, this driver has not been tested in a long time. However, if broken, I expect that it
would take less than a day to get the MX driver working again.

The Joerger SMC24 controller does not have an internal register to record its current position, so it needs the
assistance of an external device to keep track of the motor’s absolute position. Traditionally, a Kinetic Systems 3640
CAMAC up/down counter is used as the external device, but any device capable of acting as an encoder-like device
may be used as long as there is an MX encoder driver for it.

Also, traditionally the Kinetic Systems 3640 up/down counter was modified in the field to connect pairs of 16-bit
up/down counters to form 32-bit up/down counters. However, if this has not been done, the driver can also emulate
in software a 32-bit step counter using a 16-bit hardware encoder by setting the bit in the ”flags” variable called
MXF SMC24USE 32BIT SOFTWARECOUNTER (0x1) .

3.2.12 Lakeshore 330 Temperature Controller

3.2.13 Mar Desktop Beamline

3.2.14 McLennan

3.2.15 McLennan PM-304

The MX driver for the PM304 requires that responses from the controller include an address prefix. By default, the
PM304 has this feature turned off. You may turn it on by sending the string

1AD

to the PM304, assuming that it is configured for address 1. Please note that the AD command is a toggle, so if address
prefixes are already turned on, the AD command will turn them off.

3.2. MOTOR CONTROLLERS 17

3.2.16 National Instruments PC-STEP

3.2.17 National Instruments ValueMotion

3.2.18 Network Motor

3.2.19 Newport

Note: For the MM4000, this driverassumesthat the value of the field “Terminator” under “General Setup” for the
controller is set to CR/LF.

3.2.20 OMS VME58

3.2.21 OSSµ-GLIDE

3.2.22 Oxford Cryosystems Cryostream 600 Temperature Controller

3.2.23 Oxford Instruments ITC503 Temperature Controller

itc503 control

The value of ’parametertype’ is the letter that starts the ITC503 command that will be sent. The currently supported
values are:

• A - Set auto/manual for heater and gas

• C - Set local/remote/lock status

• G - Set gas flow (in manual only)

• O - Set heater output volts (in manual only)

There are several other ITC503 control commands, but only the ones likely to be used in routine operation are
supported.

itc503 motor

The two lowest order bits in ’itc503motor flags’ are used to construct a ’Cn’ control command. The ’Cn’ determines
whether or not the controller is in LOCAL or REMOTE mode and also whether or not the LOC/REM button is locked
or active. The possible values for the ’Cn’ command are:

• C0 - Local and locked (default state)

• C1 - Remote and locked (front panel disabled)

• C2 - Local and unlocked

• C3 - Remote and unlocked (front panel disabled)

18 CHAPTER 3. MOTORS

itc503 status

The value of ’parametertype’ is used to construct an ITC503 ’R’ command. Thus, the values of the parameters are
as listed in the Oxford manual:

• 0 - Set temperature

• 1 - Sensor 1 temperature

• 2 - Sensor 2 temperature

• 3 - Sensor 3 temperature

• 4 - Temperature error

• 5 - Heater O/P (as

• 6 - Heater O/P (as Volts, approx.)

• 7 - Gas flow O/P (arbitrary units)

• 8 - Proportional band

• 9 - Integral action time

• 10 - Derivative action time

• 11 - Channel 1 freq/4

• 12 - Channel 2 freq/4

• 13 - Channel 3 freq/4

3.2.24 Physik Instrumente E662 Piezo Controller

3.2.25 Pontech STP100

The permitted board numbers are from 1 to 255.
The permitted values for digital I/O pins are:

0 - Disable the pin.
3, 5, 6, 8 - The pin is active closed.
-3, -5, -6, -8 - The pin is active open.

Pins 5 and 6 are normally used for limit switches while either pin 3 or pin 8 is used for the home switch. This is
because pins 5 and 6 already have pullup resistors.

The output of the RP command is 0 = closed and 1 = open.

3.2. MOTOR CONTROLLERS 19

3.2.26 Prairie Digital Model 40

3.2.27 Radix Databox

3.2.28 Scientific Instruments 9650 Temperature Controller

3.2.29 SCIPE Motor

3.2.30 Soft Motor

3.2.31 Velmex VP9000

3.2.32 XIA HSC-1 Huber Slit Controller

By default, the HSC-1 Huber Slit Controllers are delivered with default values that do not allow the slit blades to be
moved to anywhere the blades can physically reach. The default values for parameters 1 and 2 are:

Parameter Name Default Value Default in um
1 Outer Motion Limit 4400 11000 um
2 Origin Position 400 1000 um

The MX drivers for the HSC-1 assume that these two parameters have been redefined to have the following values:
Parameter Name Default Value Default in um

1 Outer Motion Limit 10400 26000 um
2 Origin Position 5200 13000 um

The reprogramming must be done using a terminal program like Kermit or Minicom. Suppose you have an HSC-1
controller with a serial number of XIAHSC-B-0001. Then the appropriate commands to send to the HSC-1 would be:

!XIAHSC-B-0001 W 1 10400
!XIAHSC-B-0001 W 2 5200

Next, in the MX config file, specify the limits, scales and offsets of the various axes as follows:
XIA motor name negative limit (raw units) positive limit (raw units) scale offset

A -65535 65535 2.5 -13000
B -65535 65535 2.5 -13000
C -65535 65535 2.5 0
S 0 131071 2.5 -26000

Then, you will be able to move the A, B, and C motors from -13000 um to +13000 um and the S motor from 0
um to 26000 um.

Please note that the HSC-1 motor positions can only be set to the value 0. A “set motor ... position” command to
any other value than zero will fail. The “set motor ... position 0” command itself will cause the HSC-1 to execute an
“Immediate Calibration” or “0 I” command. Also note that the slit size motor S cannot be moved to a negative value,
so if S is at zero and there is a visible gap between the blades, then you will have to manually close the slit by hand.

Here is an example database for two HSC-1 controllers attached to the same serial port:

hsc1_rs232 interface rs232 tty "" "" 9600 8 N 1 N 0xd0a 0xd /dev/ttyS0
hsc1_1 interface generic hsc1 "" "" hsc1_rs232 2 XIAHSC-B-0067 XIAHSC-B-0069
hsc67a device motor hsc1_motor "" "" 0 0 -65535 65535 0 -1 -1 2.5 -13000 um hsc1_1 0 A

20 CHAPTER 3. MOTORS

hsc67b device motor hsc1_motor "" "" 0 0 -65535 65535 0 -1 -1 2.5 -13000 um hsc1_1 0 B
hsc67c device motor hsc1_motor "" "" 0 0 -65535 65535 0 -1 -1 2.5 0 um hsc1_1 0 C
hsc67s device motor hsc1_motor "" "" 0 0 0 131071 0 -1 -1 2.5 -26000 um hsc1_1 0 S
hsc69a device motor hsc1_motor "" "" 0 0 -65535 65535 0 -1 -1 2.5 -13000 um hsc1_1 1 A
hsc69b device motor hsc1_motor "" "" 0 0 -65535 65535 0 -1 -1 2.5 -13000 um hsc1_1 1 B
hsc69c device motor hsc1_motor "" "" 0 0 -65535 65535 0 -1 -1 2.5 0 um hsc1_1 1 C
hsc69s device motor hsc1_motor "" "" 0 0 0 131071 0 -1 -1 2.5 -26000 um hsc1_1 1 S

3.3 Pseudomotors

Pseudomotor support goes here.

3.3.1 ADSC Two Theta

3.3.2 A-Frame Detector Motor

This is an MX motor driver for the pseudomotors used by Gerd Rosenbaum’s A-frame CCD detector mount. The
geometry of this detector mount is shown in the following figure:

The pseudomotors available are:

• detectordistance- This is the length of the line perpendicular to the plane containing the front face of the
detector which passed through the center of rotation of the goniometer head.

• detectorhorizontalangle- This is the angle between the line used by the detector distance and the horizonal
plane.

• detectoroffset - This is the distance between the centerline of the detector and the line used to define the
detector distance above.

There are three constants that describe the system:

• A - This is the perpendicular distance between the two vertical supports that hold up the detector.

• B - This is the distance along the centerline of the detector from the front face of the detector to the point where
a perpendicular from the downstream detector pivot intersects this line.

• C - This is the separation between the centerline of the detector and the line defining the detector distance
above.

The pseudomotors depend on the positions of three real motors. These are:

• dv upstream- This motor controls the height of the upstream vertical detector support.

• dv downstream- This motor controls the height of the downstream vertical detector support.

• dh - This motor controls the horizontal position of the vertical detector supports.

Confused? I am planning to write a short document that describes the definitions of these parameters in more
detail and derives the formulas describing them. If you are reading this text and I have not yet written that document,
then pester me until I do write it.

Warning: The detector horizonal angle is expressed internally in radians. If you want to display the angle in
degrees, use the scale field of the angle pseudomotor to do the conversion.

3.3. PSEUDOMOTORS 21

Figure 3.2: A-frame CCD detector mount designed by Gerd Rosenbaum

22 CHAPTER 3. MOTORS

3.3.3 APS 10-ID

3.3.4 APS 18-ID

3.3.5 Delta

3.3.6 Elapsed Time

3.3.7 Energy

3.3.8 Linear Function

3.3.9 Monochromator

The monochromator pseudomotor is implemented using a large collection of MX records. These records can be
categorized into several groups:

• The monochromator record withN dependencies.

• N dependency list records.

• N dependency enable records.

• N dependency parameter records.

• N dependency record list records.

• N dependency type records.

where the value ofN above is set by the value of thenumdependenciesfield in the monochromator record.

Monochromator Record

The MX Motor Driver Support page describes the common motor record description fields. For themonochromator
driver, the following driver specific fields are present:

Field Name Field Type Number of
Dimensions

Sizes Description

SeeCommon motor field definitions
numdependencies long 0 0 The number of dependencies for

this monochromator pseudomotor.
list array record 1 numdependencies The list of depencency list records.

Example:

theta device motor monochromator "" "" 0 0 -10 270 0 -1 -1 1 0 deg 4 theta_list momega_list id_ev_list normal_list

The monochromator record is a pseudomotor record which contains a list of the dependencies used by the pseu-
domotor. In general, one of the dependencies will be aprimary dependency which describes the primary axis used
by the monochromator pseudomotor(usually theta). The rest of the dependencies will besecondarydependencies
that describe motors that are to be moved to positions that depend on the position of the primary dependency motor.
There should only be one primary dependency.

In the example above, the dependencies specified are:

3.3. PSEUDOMOTORS 23

• theta list - This is the primary dependency and describes the dependence of the monochromator pseudomotor
on the real theta axis of the monochromator.

• momegalist - A secondary dependency that controls the angle between the first and second monochromator
crystal.

• id ev list - A secondary dependency that controls the energy of the peak of the undulator spectrum for this
beamline.

• normal list - A secondary dependency that controls the perpendicular spacing between the first and second
monochromator crystals.

This example does not include all of the available dependency types which are described in more detail below. In
addition, the primary dependency does not have to be the first record listed, but it is customary to do so.

Dependency List Records

An example dependency list record looks like

momega_list variable inline record "" "" 1 4 momega_enabled momega_type momega_params momega_records

Dependency list records must be four element 1-dimensional arrays of type MXFTRECORD. The individual ele-
ments of this array must be in the following order:

• Dependency enable record- used to enable or disable the dependency. (momegaenabledin the example above.)

• Dependency type record- describes what type of dependency this is. (momegatypein the example above.)

• Dependency parameters record- describes the parameters used by this dependency. (momegaparamsin the
example above.)

• Dependency record list- describes the records used by this dependency. (momegarecords in the example
above.)

The individual elements of the array are described in more detail below.

Dependency Enable Records

An example dependency enable record looks like

momega_enabled variable net_variable net_int "" "" localhost momega_enabled.value 1 1 0

The dependency enable record must be a variable record of type MXFTINT. It has two legal values:

• 1 - The dependency is enabled and the dependent motor(s) will be moved to positions that correspond to the
position of the primary dependency.

• 0 - The dependency is disabled and the dependent motor(s) will not be moved.

24 CHAPTER 3. MOTORS

Dependency Parameter Records

An example dependency parameters record looks like

momega_params variable net_variable net_double "" "" localhost momega_params.value 1 4 0 0 0 0

The dependency parameters record will be a 1-dimensional variable record of some kind. The particular variable
type used will depend on the dependency type as described below. In the example above, the parameters record is a
1-dimensional array of integers that are all initialized to 0.

Dependency Record List Records

An example dependency record list looks like

momega_records variable inline record "" "" 1 1 momega

The dependency record list record will be a 1-dimensional variable record of type MXFTRECORD. The number
and identity of the listed records will depend on the dependency type as described below. In the example above, the
record list array contains only the recordmomega.

Dependency Type Records

An example dependency type record looks like

momega_type variable inline int "" "" 1 1 2

The dependency type record will be 1-dimensional variable record of type MXFTINT with only one element, namely,
the dependency type. In the example above, the dependency type is 2.

At present, nine different dependency types are available. Dependency types 0 and 1 areprimary dependency
types, while types 2 through 8 aresecondarydependency types.

Type 0 - Theta dependency

The theta dependency is used to control the position of the primary theta axis. This dependency is normally the
primary dependency for the monochromator pseudomotor. If this dependency does not exist or is disabled, the real
theta axis will not be moved at all.

• Record list record - This is a 1-dimensional array with only one element, specifically, the name of thereal
theta motor record.

• Parameters record- This record must be present, but its contents are not used by this dependency. Typically,
a dummy variable will be used here as in the example below.

An example set of records for the theta dependency looks like

theta_list variable inline record "" "" 1 4 theta_enabled theta_type dummy_params theta_records
theta_type variable inline int "" "" 1 1 0
theta_enabled variable inline int "" "" 1 1 1
theta_records variable inline record "" "" 1 1 theta_real
dummy_params variable inline double "" "" 1 1 0

Normally, there is no reason for the users to disable this dependency, so it is standard to hard code it to 1 as in the
example above.

3.3. PSEUDOMOTORS 25

Type 1 - Energy dependency

The energy dependency is aprimarydependency that computes the monochromator theta angle from a monochroma-
tor energy provided by a foreign beamline control system. Use of this dependency isnot recommended, unless the
underlying beamline control software/hardware does not provide a direct way of querying and controlling the theta
angle. Use of this dependency isincompatible with the type 0 theta dependency specified above. Do not specify both
of them in the same MX database.

If you are looking for a way to control adependentmotor as a polynomial function of energy, you should be using
the type 8energy polynomialdependency described below.

• Record list record - This is a 1-dimensional array of type MXFTRECORD containing two elements:

– energy record- This motor record queries and controls the monochromator energy.

– monochromator d spacing record- This is a variable record that contains the d spacing of the monochro-
mator crystal in angstroms.

• Parameters record- This record must be present, but its contents are not used by this dependency. Typically,
a dummy variable will be used here as in the example below.

An example set of records for the energy dependency looks like

energy_list variable inline record "" "" 1 4 energy_enabled energy_type dummy_params energy_records
energy_type variable inline int "" "" 1 1 1
energy_enabled variable net_variable net_int "" "" 1 1 1
energy_records variable inline record "" "" 1 2 energy d_spacing
dummy_params variable inline double "" "" 1 1 0

A corresponding d spacing variable would look like

d_spacing variable net_variable net_double "" "" localhost d_spacing.value 1 1 3.1355

The monochromator theta angle is computed using the standard Bragg equation
theta = asin(12398.5 / (2.0 * dspacing * energy))
Normally, there is no reason for the users to disable this dependency, so it is standard to hard code it to 1 as in the

example above.

Type 2 - Polynomial dependency

This dependency type is asecondarydependency that allows a dependent motor to be moved to positions that are a
polynomial function of the theta position of the monochromator. The computed position will be of the form

dependentposition = c0 + c1 * theta + c2 * (theta**2) + c3 * (theta**3) + ...
Beamline staff may configure this polynomial to have as few or as many terms in it as they want by changing

the number of elements in the parameters array below. For example, a parameters array record with only two array
elements will describe a dependent position that has a linear dependence on theta, while a parameters array record
with four array elements describes a cubic dependence on theta. It is generally not useful to use a polynomial of
higher order than cubic, although there is no limit in the record as to how high the order may be.

• Record list record - This is a 1-dimensional array with only one element, specifically, the name of the depen-
dent motor record.

26 CHAPTER 3. MOTORS

• Parameters record- This is a 1-dimensional array of type MXFTDOUBLE which contains the coefficients
of the polynomial. The coefficients are specified in order starting with the constant term and continuing up to
the coefficient of the highest order term.

An example set of records for the polynomial dependency looks like

momega_list variable inline record "" "" 1 4 momega_enabled momega_type momega_params momega_records
momega_type variable inline int "" "" 1 1 2
momega_enabled variable net_variable net_int "" "" localhost momega_enabled.value 1 1 0
momega_records variable inline record "" "" 1 1 momega
momega_params variable net_variable net_double "" "" localhost momega_params.value 1 4 0 0 0 0

In the example above,momegaparamsis a cubic polynomial. If the value ofmomegaparamsat some particular time
was set to something like (0.32, 0.41, -0.02, 0.015), the computed polynomial would have the form

momega = 0.32 + 0.41 * theta - 0.02 * (theta**2) + 0.015 * (theta**3)
Typically, the values of these coefficients will be determined by measuring the location of the peak X-ray in-

tensity as a function of the dependent motor position for several values of theta Then a curve will be fitted to the
measurements.

Type 3 - Insertion device energy dependency

This dependency type is asecondarydependency that changes the energy of the undulator peak such that the maxi-
mum of the undulator spectrum is at the same energy as the monochromator.

• Record list record - This is a 1-dimensional array of type MXFTRECORD containing two elements:

– insertion device motor record- This is a motor record that controls the position of the undulator peak in
units of eV.

– monochromator d spacing record- This is a variable record that contains the d spacing of the monochro-
mator crystal in angstroms.

• Parameters record- This is a 1-dimensional array of type MXFTDOUBLE which contains two elements:

– gap harmonic- This is the requested undulator harmonic number and should be a positive odd integer
such as 1, 3, 5, etc. This is usually set to 1.

– gap offset- This is an offset to be added to the computed gap energy.

For a given monochromatorthetaposition in degrees, the undulator energy is computed as follows:
monoenergy = 12398.5 / (2.0 * dspacing * sin(theta))
undulatorenergy = (monoenergy + gapoffset) / gapharmonic
Please note that if the undulator controls provided by your storage ringalsohave a way of setting the gap harmonic

in addition to the method provided by MX, then you should only set one of them to the harmonic number and set the
other to 1. For example, at the APS, if you set both EPICS’s variable for the gap harmonic to 3and MX’s variable
for the gap harmonic to 3, you would actually end up with the ninth harmonic.

An example set of records for the insertion device energy dependency looks like

id_ev_list variable inline record "" "" 1 4 id_ev_enabled id_ev_type id_ev_params id_ev_records
id_ev_type variable inline int "" "" 1 1 3
id_ev_enabled variable net_variable net_int "" "" localhost id_ev_enabled.value 1 1 0
id_ev_records variable inline record "" "" 1 2 id_ev d_spacing
id_ev_params variable net_variable net_double "" "" localhost id_ev_params.value 1 2 1 100

3.3. PSEUDOMOTORS 27

Type 4 - Constant exit Bragg normal dependency

This dependency type is asecondarydependency that changes the perpendicular spacing between the first and second
monochromator crystals so that the X-ray beam exiting the monochromator stays at a constant height.

• Record list record - This is a 1-dimensional array of type MXFTRECORD containing two elements:

– normal record- This motor record controls the perpendicular spacing between the two monochromators
crystals.

– beam offset record- This is a variable record of type MXFTDOUBLE that contains the desired fixed
offset distance of the beam expressed in the same units as thenormalmotor.

• Parameters record- This record must be present, but its contents are not used by this dependency. Typically,
a dummy variable will be used here as in the example below.

An example set of records for the Bragg normal dependency looks like

normal_list variable inline record "" "" 1 4 normal_enabled normal_type dummy_params normal_records
normal_type variable inline int "" "" 1 1 4
normal_enabled variable net_variable net_int "" "" localhost normal_enabled.value 1 1 0
normal_records variable inline record "" "" 1 2 normal beam_offset
dummy_params variable inline double "" "" 1 1 0

A corresponding beam offset variable would look like

beam_offset variable net_variable net_double "" "" localhost beam_offset.value 1 1 -35000

The Bragg normal position is computed from the beam offset and the monochromator theta angle via the equation
braggnormal = beamoffset / (2.0 * cos(theta))
If a positive move of the normal motor at theta = 0 is in the opposite direction from the desired beam offset, then

the value of the beam offset must be set to a negative number. For example, this is true of the MX installations at APS
sectors 10 and 17 where beamoffset = -35000 um.

Type 5 - Constant exit Bragg parallel dependency dependency

This dependency type is asecondarydependency that translates the second crystal parallel to its surface. This depen-
dency should normally be used in combination with the Bragg normal dependency listed above. It is used to ensure
that the X-ray beam does not fall off the end of the second crystal.

• Record list record - This is a 1-dimensional array of type MXFTRECORD containing two elements:

– parallel record- This motor record controls the translated position of the second crystal.

– beam offset record- This is a variable record of type MXFTDOUBLE that contains the desired fixed
offset distance of the beam expressed in the same units as thenormalmotor.

• Parameters record- This record must be present, but its contents are not used by this dependency. Typically,
a dummy variable will be used here as in the example below.

An example set of records for the Bragg parallel dependency looks like

28 CHAPTER 3. MOTORS

parallel_list variable inline record "" "" 1 4 parallel_enabled parallel_type dummy_params parallel_records
parallel_type variable inline int "" "" 1 1 5
parallel_enabled variable net_variable net_int "" "" localhost parallel_enabled.value 1 1 0
parallel_records variable inline record "" "" 1 2 parallel beam_offset
dummy_params variable inline double "" "" 1 1 0

A corresponding beam offset variable would look like

beam_offset variable net_variable net_double "" "" localhost beam_offset.value 1 1 -35000

If used in combination with a Bragg normal dependency, the two dependencies should use the same MX variable to
control the beam offset.

The Bragg parallel position is computed from the beam offset and the monochromator theta angle via the equation
braggparallel = beamoffset / (2.0 * sin(theta))

Type 6 - Experiment table height dependency

If a given monochromator does not support fixed exit beam operation, an alternate way to ensure that the X-ray beam
hits the desired target is to put the experiment on a table that can be vertically translated to track the beam.

• Record list record - This is a 1-dimensional array of type MXFTRECORD containing three elements:

– table height record- This motor record controls the vertical height of the experiment table.

– table offset record- This is a variable record of type MXFTDOUBLE that provides a way of adding a
constant offset to the computed table height.

– crystal separation record- This is a variable record of type MXFTDOUBLE that contains the perpen-
dicular crystal separation distance expressed in the same units as thetable heightmotor.

• Parameters record- This record must be present, but its contents are not used by this dependency. Typically,
a dummy variable will be used here as in the example below.

An example set of records for the experiment table height dependency looks like

theight_list variable inline record "" "" 1 4 theight_enabled theight_type dummy_params theight_records
theight_type variable inline int "" "" 1 1 6
theight_enabled variable net_variable net_int "" "" localhost theight_enabled.value 1 1 0
theight_records variable inline record "" "" 1 3 theight toffset crystal_sep
dummy_params variable inline double "" "" 1 1 0

A corresponding pair of variables would look like

toffset variable net_variable net_double "" "" localhost toffset.value 1 1 0
crystal_sep variable net_variable net_double "" "" localhost crystal_sep.value 1 1 5000

The experiment table height position is computed via the equation
tableheight = tableoffset + 2.0 * crystalseparation * cos(theta)

3.3. PSEUDOMOTORS 29

Type 7 - Diffractometer theta dependency

The diffractometer theta dependency is used to control the Bragg angle of a diffractometer or goniostat in the exper-
imental hutch so that it is set to the correct angle to diffract the X-ray beam coming from the monochromator. This
dependency assumes that, in general, the crystal on the diffractometer will have a different d spacing than that of the
monochromator crystal.

If the diffractometer angle is calledhthetaand the diffractometer d spacing is calledhd spacing, the diffractometer
angle is computed by the equation

sin(htheta) = dspacing * sin(theta) / hdspacing
The raw value ofhthetais adjusted using a linear equation of the form
hthetaadjusted = diffractometerscale * htheta + diffractometeroffset

• Record list record - This is a 1-dimensional array of type MXFTRECORD containing three elements:

– diffractometer theta motor record- This the a motor record that controls the diffractometer theta angle.

– monochromator d spacing record- This is a variable record that contains the d spacing of the monochro-
mator crystal in angstroms.

– diffractometer d spacing record- This is a variable record that contains the d spacing of the diffractometer
crystal in angstroms.

• Parameters record - This is a 1-dimensional array of type MXFTDOUBLE which contains two elements
which are used to compute the adjusted diffractometer angle:

– diffractometer scale

– diffractometer offset

An example set of records for the diffractometer theta dependency looks like

htheta_list variable inline record "" "" 1 4 htheta_enabled htheta_type htheta_params htheta_records
htheta_type variable inline int "" "" 1 1 7
htheta_enabled variable net_variable net_int "" "" localhost htheta_enabled.value 1 1 0
htheta_records variable inline record "" "" 1 3 htheta d_spacing hd_spacing
htheta_params variable net_variable net_double "" "" localhost htheta_params.value 1 2 0 0

Type 8 - Energy polynomial dependency

The energy polynomial dependency is similar to the type 2 polynomial dependency described above, except the
dependent motor position is a polynomial function of the monochromator X-ray energy. Thus, the dependent position
will have the form

dependentposition = c0 + c1 * energy + c2 * (energy**2) + c3 * (energy**3) + ...
This dependency assumes that the energy is expressed in eV.

• Record list record - This is a 1-dimensional array containing two elements:

– dependent motor record- This motor record controls the dependent motor whose position is determined
by the energy polynomial.

– monochromator d spacing record- This is a variable record that contains the d spacing of the monochro-
mator crystal in angstroms. This record is used to convert the theta angle in degrees to energy in eV.

30 CHAPTER 3. MOTORS

• Parameters record- This is a 1-dimensional array of type MXFTDOUBLE which contains the coefficients
of the polynomial. The coefficients are specified in order starting with the constant term and continuing up to
the coefficient of the highest order term.

An example set of records for the energy polynomial dependency looks like

focus_list variable inline record "" "" 1 4 focus_enabled focus_type focus_params focus_records
focus_type variable inline int "" "" 1 1 8
focus_enabled variable net_variable net_int "" "" localhost focus_enabled.value 1 1 0
focus_records variable inline record "" "" 1 2 focus d_spacing
focus_params variable net_variable net_double "" "" localhost focus_params.value 1 4 0 0 0 0

Type 9 - Option selector dependency

The option selector dependency is used together with a “positionselect” calculation record to switch an external value
between multiple settings depending on the current value of the monochromator theta position. The “positionselect”
variable has an integer value from 1 to N. For example, this could be used to automatically switch between mirror
stripes at certain X-ray energies.

• Record list record - This is a 1-dimensional array of type MXFTRECORD containing two elements:

– option selector record- This should be a calculation variable record of type “positionselect” that controls
the external value and contains a list of allowed values for the external value.

– option range record- This is the name of the parameters record below.

• Parameters record - This is a 2-dimensional Nx2 array of type MXFTDOUBLE which contains pairs of
elements that describe the limits for each allowed theta range. The two values for each theta range are

– theta range lower limit

– theta range upper limit

The number N is the number of theta ranges.

An example set of records for the option selector dependency looks like

stripe_list variable inline record "" "" 1 4 stripe_enabled stripe_type dummy_params stripe_records
stripe_type variable inline int "" "" 1 1 9
stripe_enabled variable inline int "" "" 1 1 1
stripe_records variable inline record "" "" 1 2 stripe_select stripe_params
stripe_params variable inline double "" "" 2 4 2 0 5 4.5 8.5 8 11 10.5 15
stripe_select variable calc position_select "" "" stripe 4 300 600 900 1200 1 1 -1
stripe device motor soft_motor "" "" 0 0 -1000000000 1000000000 0 -1 -1 0.01 0 um 100000 0 50000

The example above is for an X-ray mirror whose transverse position is determined by a motor record calledstripe.
There are 4 allowed positions forstripe, namely, 300, 600, 900, and 1200. The allowedthetaranges corresponding
to the allowed positions are 0 to 5 degrees, 4.5 to 8.5 degrees, 8 to 11 degrees, and 10.5 to 15 degrees. Thestripe
position to be selected is determined by comparing the current position ofthetato the parameter ranges in the variable
stripe params. According tostripe params, thestripemotor is allowed to be at 300 iftheta is between 0 and 5, or

3.3. PSEUDOMOTORS 31

it is allowed to be at 600 iftheta is between 4.5 and 8.5, and so forth. Ifthetamoves outside the allowed range of
positions for the current selection, the option selector will switch to the next selection.

Notice that the allowed ranges fortheta overlap. This is to provide a deadband for switches between option
selector ranges. As an example, supposetheta is currently at 7 degrees. This means thattheta is within the second
option selector range of 4.5 to 8.5 degrees and that thestripe motor should currently be at 600. However, iftheta
is moved to 9 degrees, this is outside the current option selector range, sostripewill be moved to the next allowed
position of 900. However, the lower end of the new range, namely, 8 degrees, is below the upper end of the original
range, namely, 8.5 degrees. This means thatthetamust be moved below 8 degrees before thestripeposition will be
moved back to the previous value of 600.

Note that ifthetais below 0 degrees, thestripemotor will be sent to 300, while ifthetais above 15 degrees, the
stripemotor will be moved to 1200.

Bugs

The MX database for the monochromator pseudomotor system has turned out to be much more complex to set up
than I had originally wanted. It is my intention to revise this pseudomotor to be easier to configure, but I have no time
estimate as to when that will happen.

Some of the dependencies are user configurable via the parameters record while others are configured via addi-
tional records added to the record list.

3.3.10 Q Motor

This is an MX pseudomotor driver for the momentum transfer parameterq, which is defined as

q =
4π sin(θ)

λ
=

2π

d

whereλ is the wavelength of the incident X-ray,θ is the Bragg angle for the analyzer arm andd is the effective crystal
d-spacing that is currently being probed.

Warning: θ above must not be set to the angle of the analyzer arm. Instead, it must be set to half of that angle
which is the nominal Bragg angle.

3.3.11 Segmented Move

3.3.12 Slit Motor

slit type field - This integer field select the type of slit pseudomotor that this record represents. There are four possible
values for theslit typefield, which come in two groups of two, namely, the SAME case and the OPPOSITE case. The
allowed values are:

• 1 - (MXF SLIT CENTERSAME)

• 2 - (MXF SLIT WIDTH SAME)

• 3 - (MXF SLIT CENTEROPPOSITE)

• 4 - (MXF SLIT WIDTH OPPOSITE)

32 CHAPTER 3. MOTORS

The SAME cases above are for slit blade pairs that move in the same physical direction when they are both
commanded to perform moves of the same sign. The OPPOSITE cases are for slit blade pairs that move in the
opposite direction from each other when they are both commanded to perform moves of the same sign.

As an example, for a top and bottom slit blade pair, if a positive move of each causes both blades to go up, you
use the SAME case. On the other hand, if a positive move of each causes the top slit blade to go up and the bottom
slit blade to go down, you use the OPPOSITE case.

3.3.13 Table Motor

3.3.14 Tangent Arm/Sine Arm

This is an MX motor driver to move a tangent arm or sine arm pseudomotor.
IMPORTANT: The moving motor position and the arm length must both be specified using thesameuser units,

while the angle offset must be specified in radians. Thus, if the moving motor position is specified in micrometers,
then the arm length must be specified in micrometers as well.

If you want to specify the angle offset in degrees rather than in radians, the simplest way is to create a ’transla-
tion mtr’ record containing only the raw angle offset motor. Then, set a scale factor in the translation motor record
that converts from radians to degrees.

A tangent arm consists of two arms that are connected at a pivot point as follows:

*
B *
*

* |
* |

* |
* | m

* |
* |

* \ theta |
*-----------------------+------
ˆ a A
|
|

pivot point

A linear motor is attached to the fixed arm at point A and then moves a push rod that pushes the moving arm at
point B. In this geometry, the position of the moving motor, m, is related to the angle theta by the relationship

tan(θ) =
m

a

where a is the distance of the motor on the arm it is attached to from the pivot point. The important consideration
here is that the linear motion is perpendicular to the fixed arm.

A sine arm is similar except that the linear motion is now perpendicular to the moving arm:

*

3.3. PSEUDOMOTORS 33

*
*

B *
*

* \
* \

* \ m
* \

* \ theta \
*-----------------------+------
ˆ a A
|
|

pivot point

This changes the equation to the form

sin(θ) =
m

a

hence the name “sine arm”.
Note: The ’tangentarm’ and ’sinearm’ drivers share the same code and distinguished in the driver code by their

different driver types, namely, MXTMTR TANGENT ARM and MXT MTR SINE ARM.

3.3.15 Theta-Two Theta

3.3.16 Translation

3.3.17 Wavelength

3.3.18 Wavenumber

3.3.19 XAFS Wavenumber

This MX pseudomotor driver controls another MX motor in units of XAFS electron wavenumber.
The XAFS electron wavenumberk is computed using the equation:

Ephoton = Eedge +
h̄2k2

2melectron

34 CHAPTER 3. MOTORS

Chapter 4

Counter/Timers

4.1 Am9513

The following is an example database for the IIT BCPS setup for Am9513 boards:

ports interface portio linux_portio "" "" /dev/portio
am9513 interface generic am9513 "" "" ports 0x284 0x1b0
i8255 interface generic i8255 "" "" ports 0x280
#
Motor 1 uses Am9513 counters 1 & 2 to generate the motor step pulses while
8255 output bit 2 of port C is used to generate the direction signal.
#
motor1 device motor am9513_motor "" "" 0 0 -1000000 1000000 0 -1 -1 0.005 0 um 2 am9513:1 am9513:2 portc 2 5000000 1000 0
portc device digital_output i8255_out "" "" 0 i8255 C
#
Scaler 1 is a 32 bit scaler created using Am9513 counters 4 & 5. The
counter is gated by the gate input for its low order counter (GATE4),
while external pulses to be counted are fed to the source input for
its low order counter (SRC4).
#
scaler1 device scaler am9513_scaler "" "" 0 0 0 2 am9513:4 am9513:5 0x4 0x4
#
Timer 1 is a 16 bit timer created using Am9513 counter 3. It is using
a 5 MHz clock signal.
#
timer1 device timer am9513_timer "" "" 1 am9513:3 5000000

Warning: Theam9513interface driver has only been fully implemented and tested for Am9513-based systems
using 8-bit bus access.

At present, MX Am9513 timers can only use one 16-bit counter. Also note that the timer driver relies on the
output for the timer’s counter being connected to its own gate input. That is, OUT(n) must be connected to GATE(n)

35

36 CHAPTER 4. COUNTER/TIMERS

Figure 4.1: Wiring diagram used by the IIT BCPS department

4.2. DSP QS450 OR KINETIC SYSTEMS 3610 37

for the timer to work. Of course, OUT(n) is also connected to the GATE inputs of the scalers that this timer is gating.

4.2 DSP QS450 or Kinetic Systems 3610

4.3 EPICS Scaler

The MX EPICS scaler support optionally can make use of globally visible dark current values. This is done by
loading an additional EPICS database file in “st.cmd” that can be found in the MX base distribution in the file
mx/driver info/epicsscaler/Jscalerdark.db. This EPICS database implements two additional records per EPICS
scaler channel. For example, for scaler channel 2 the records are

• (P)(S)Dark2.VAL - Dark current per second for scaler channel 2.

• (P)(S)SD2.VAL - The dark current subtracted value for scaler 2.

where $(P) and $(S) are defined to have the same values as in the standard Jscaler.db database. The database is loaded
into the EPICS VME crate by adding a line to the ’st.cmd’ startup script that looks like

dbLoadRecords("iocBoot/ioc1/Jscaler_dark.db","P=s10id:,S=scaler1,C=0", top)

Please note that this database contains a definition for the scaler record $(P) and $(S) itself and thus is not immedi-
ately compatible with the standardJscaler.dbdatabase. This is due to the fact that EPICS does not supply any way for
an add-on database to add forward links to existing records. If you wish to combineJscaler.dbandJscalerdark.db,
the simplest way is to merely move the FLNK field whose value is “(P)(S)cts1.PROC” in Jscaler.db to the LNK4
field of Fanout record “(P)(S)fan0” defined inJscalerdark.db.

Hopefully, something equivalent to the dark current fields inJscalerdark.dbwill be added to some future version
of Jscaler.db.

38 CHAPTER 4. COUNTER/TIMERS

4.4 EPICS Timer

4.5 Joerger VSC8/16

4.6 MCA Timer

4.7 MCS Timer

4.8 Network Scaler

4.9 Network Timer

4.10 Ortec 974

4.11 Radix Databox Scaler/Timer

4.12 RTC-018

4.13 SCIPE Scaler

4.14 SCIPE Timer

4.15 Soft Scaler

4.16 Soft Timer

4.17 Pseudoscalers

4.17.1 Autoscale Related Pseudoscalers

4.17.2 MCA Related Pseudoscalers

4.17.3 MCS Scaler

4.17.4 Scaler Function

4.18 Pseudotimers

Timer Fanout

The MX timer fanout driver is used to control multiple MX timers in software as if they were one timer.
WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARN-

ING

4.18. PSEUDOTIMERS 39

This driver doesNOT attempt to ensure that all of the timers start at exactly the same time. This means that
devices gated by different timers may not be gated on for exactly the same timer interval, although the lengths of time
they are gated on for should be the same. The result is that you may getSYSTEMATIC ERRORS if you do not
use this driver intelligently. It is up to you to decide whether or not this makes a difference to the experiment you
are performing. Thebestsolution is to make sure that all of your measuring devices are gated by the same hardware
timer, but if that is not possible, then this driver may be useful as a stopgap.

Caveat emptor.

40 CHAPTER 4. COUNTER/TIMERS

Chapter 5

Pulse Generator

5.1 Network Pulse Generator

5.2 Struck SIS3801

5.3 Struck SIS3807

41

42 CHAPTER 5. PULSE GENERATOR

Chapter 6

Encoder

6.1 Kinetic Systems 3640

43

44 CHAPTER 6. ENCODER

Chapter 7

Analog I/O

7.1 APS ADCMOD2 Analog I/O

7.2 Kinetic Systems 3112 Analog Output

7.3 Kinetic Systems 3512 Analog Input

7.4 Network Analog I/O

7.5 Soft Analog I/O

7.6 Motor Controller Analog I/O

45

46 CHAPTER 7. ANALOG I/O

Chapter 8

Digital I/O

8.1 Bit I/O

8.2 Intel 8255

8.3 Kinetic Systems 3063

8.4 Linux Parport

8.5 Motorola MC6821

8.6 Network Digital I/O

8.7 PC Parallel Port

8.8 Port I/O Digital I/O

8.9 SCIPE Digital I/O

8.10 Soft Digital I/O

8.11 VME Digital I/O

8.12 Motor Controller Digital I/O

47

48 CHAPTER 8. DIGITAL I/O

Chapter 9

Relays

9.1 Blind Relay

9.2 Generic Relay

9.3 Network Relay

49

50 CHAPTER 9. RELAYS

Chapter 10

Amplifiers

10.1 APS ADCMOD2 Amplifier

10.2 Keithley 428

10.3 Network Amplifier

10.4 Oxford Danfysik IC PLUS

10.5 SCIPE Amplifier

10.6 Soft Amplifier

10.7 SRS SR-570

10.8 UDT Tramp

51

52 CHAPTER 10. AMPLIFIERS

Chapter 11

Single Channel Analyzers

11.1 Network SCA

11.2 Oxford Danfysik Cyberstar X1000

11.3 Soft SCA

53

54 CHAPTER 11. SINGLE CHANNEL ANALYZERS

Chapter 12

Multichannel Analyzers

12.1 EPICS MCA

12.2 Network MCA

12.3 Ortec UMCBI

12.4 Soft MCA

12.5 X-Ray Instrumentation Associates

12.6 Generic Records

12.6.1 MCA Alternate Time

12.6.2 MCA Channel

12.6.3 MCA Region of Interest Integral

12.6.4 MCA Value

55

56 CHAPTER 12. MULTICHANNEL ANALYZERS

Chapter 13

Multichannel Encoders

13.1 MCS Elapsed Time Multichannel Encoder

13.2 MCS Multichannel Encoder

13.3 Network Multichannel Encoder

13.4 PMAC Multichannel Encoder

13.5 Radix Databox Multichannel Encoder

57

58 CHAPTER 13. MULTICHANNEL ENCODERS

Chapter 14

Multichannel Scalers

14.1 EPICS MCS

The MX EPICS MCS support optionally can make use of globally visible dark current values. This is done by loading
an additional EPICS analog output record per MCS channel which is used to store the dark current value. This is
most easily described by giving an example.

Suppose you have a set of MCS records loaded in the EPICS “st.cmd” script that look like

dbLoadRecords("mcaApp/Db/mca.db","P=s10id:,M=mcs1,CARD=0,SIGNAL=0,DTYPE=Struck STR7201 MCS,NCHAN=2000", share)
dbLoadRecords("mcaApp/Db/mca.db","P=s10id:,M=mcs2,CARD=0,SIGNAL=1,DTYPE=Struck STR7201 MCS,NCHAN=2000", share)
dbLoadRecords("mcaApp/Db/mca.db","P=s10id:,M=mcs3,CARD=0,SIGNAL=2,DTYPE=Struck STR7201 MCS,NCHAN=2000", share)
dbLoadRecords("mcaApp/Db/mca.db","P=s10id:,M=mcs4,CARD=0,SIGNAL=3,DTYPE=Struck STR7201 MCS,NCHAN=2000", share)

Then, all that you need to add to support dark currents for these channels is to add something like the following
lines to “st.cmd”.

dbLoadRecords("iocBoot/ioc1/mcs_dark.db","P=s10id:,M=mcs1", top)
dbLoadRecords("iocBoot/ioc1/mcs_dark.db","P=s10id:,M=mcs2", top)
dbLoadRecords("iocBoot/ioc1/mcs_dark.db","P=s10id:,M=mcs3", top)
dbLoadRecords("iocBoot/ioc1/mcs_dark.db","P=s10id:,M=mcs4", top)

Themcsdark.dbdatabase file is extremely simple. The entire contents of the file is:

grecord(ao,"(P)(M)_Dark") {
field(PREC,"3")

}

A copy of this file may be found in the MX base source distribution in the filemx/driver info/epicsmcs/mcsdark.db.

59

60 CHAPTER 14. MULTICHANNEL SCALERS

14.2 Network MCS

14.3 Radix Databox MCS

14.4 Scaler Function MCS

14.5 SIS3801

14.6 Soft MCS

Chapter 15

CCD

15.1 Network CCD

15.2 Remote MarCCD

61

62 CHAPTER 15. CCD

Chapter 16

Goniostat/Diffractometer Tables

16.1 IMCA-CAT ADC Table at APS Sector 17

The ADC table is designed to support a standard crystallography goniostat. At present, it is the support for an ADSC
Quantum 105 detector system. The geometry of the table is shown by the figure below: The geometry is described
further in a technical note in PDF format. The note is also available in Postscript if you prefer.

The MX table support for ADC tables uses two different kinds of records, namely, an ADC specific table record
described here and the generic table motor record described in the motor section.

63

64 CHAPTER 16. GONIOSTAT/DIFFRACTOMETER TABLES

Figure 16.1: IMCA-CAT ADC table geometry

16.1. IMCA-CAT ADC TABLE AT APS SECTOR 17 65

16.1.1 Record Fields in the Record Description

Field Name Field Type Number of
Dimensions

Sizes Description

name string 1 16 The name of the record
mx superclass recordtype 0 0 The string “device”

mx class recordtype 0 0 The string “table”
mx type recordtype 0 0 The string “adctable”

label string 1 40 A verbose description of the record.
acl description string 1 40 Placeholder for an access control list(not yet im-

plemented).
motor record array record 1 6 The names of the raw motor records used by this

table record listed in the order X1, Y1, Y2, Z1,
Z2, and Z3.

m1 double 0 0 Distance from the table zero point to the Z1 pivot
point.

m2 double 0 0 Distance from the table zero point to the Z2 pivot
point.

m3 double 0 0 Distance from the table zero point to the Z3 pivot
point.

rx double 0 0 X component of the distance from the table zero
point to the rotation center.

ry double 0 0 Y component of the distance from the table zero
point to the rotation center.

rz double 0 0 Z component of the distance from the table zero
point to the rotation center.

An example database for this table type would look like:

adsc_table device table adc_table "" "" x1 y1 y2 z1 z2 z3 0.4 0.6 0.75 0.25 0.25 0.5
x1 device motor soft_motor "" "" 0 0 -20000000 20000000 0 -1 -1 0.001 0 um
y1 device motor soft_motor "" "" 0 0 -20000000 20000000 0 -1 -1 0.001 0 um
y2 device motor soft_motor "" "" 0 0 -20000000 20000000 0 -1 -1 0.001 0 um
z1 device motor soft_motor "" "" 0 0 -20000000 20000000 0 -1 -1 0.001 0 um
z2 device motor soft_motor "" "" 0 0 -20000000 20000000 0 -1 -1 0.001 0 um
z3 device motor soft_motor "" "" 0 0 -20000000 20000000 0 -1 -1 0.001 0 um
tx device motor table_motor "" "" 0 0 -20000000 20000000 0 -1 -1 1 0 um adsc_table 1
ty device motor table_motor "" "" 0 0 -20000000 20000000 0 -1 -1 1 0 um adsc_table 2
tz device motor table_motor "" "" 0 0 -20000000 20000000 0 -1 -1 1 0 um adsc_table 3
troll device motor table_motor "" "" 0 0 -20000000 20000000 0 -1 -1 1 0 urad adsc_table 4
tpitch device motor table_motor "" "" 0 0 -20000000 20000000 0 -1 -1 1 0 urad adsc_table 5
tyaw device motor table_motor "" "" 0 0 -20000000 20000000 0 -1 -1 1 0 urad adsc_table 6

In this example, theadsctable record is the actual table record itself. It is configured to use soft motorsx1, y1,
y2, z1, z2, andz3as the raw motors. The table parameters for the example are set tom1 = 0.4, m2 = 0.6, m3 = 0.75,
rx = 0.25, ry = 0.25, andrz = 0.5.

66 CHAPTER 16. GONIOSTAT/DIFFRACTOMETER TABLES

Chapter 17

Autoscale Devices

17.1 Autoscale Amplifier

17.2 Autoscale Filter

17.3 Autoscale Filter and Amplifier

17.4 Related Devices

17.4.1 Autoscale Scaler

17.4.2 Gain Tracking Scaler

MX scaler driver to control MX gain tracking scalers. Gain tracking scalers are pseudoscalers that rescale their
reported number of counts to go up and down when an associated amplifier changes its gain.

For example, suppose that the real scaler was reading 1745 counts, the amplifier was set to108 gain and the gain
tracking scale factor was1010. Then, the gain tracking scaler would report a value of 174500 counts. If the amplifier
gain was changed to109, then the gain tracking scaler would report a value of 17450 counts.

Gain tracking scalers are intended to be used in combination with autoscaling scalers, so that when the autoscaling
scaler changes the gain of the amplifier, the values reported by gain tracking scalers will change to match.

67

68 CHAPTER 17. AUTOSCALE DEVICES

Chapter 18

RS-232

18.1 EPICS RS-232

18.2 MSDOS COM

18.3 Fossil

18.4 Kinetic Systems KS3344

18.5 Network RS-232

18.6 TCP Socket

18.7 Unix TTY

18.8 Win32 COM

69

70 CHAPTER 18. RS-232

Chapter 19

GPIB

19.1 EPICS GPIB

19.2 Keithley 500-SERIAL RS-232 to GPIB converter

19.3 Linux Lab Project GPIB

Warning: This MX driver was originally developed for the Linux 2.0.x device driver provided by the Linux Lab
Project, but that project seems to have stalled. Fortunately, the code seems to have been picked up by the Linux GPIB
Package Homepage(http://linux-gpib.sourceforge.net/)which supports Linux 2.4.x. However, this MX driver has not
yet been tested with the new Linux 2.4.x version of the device driver.

The Linux Lab Project GPIB driver does not provide an equivalent to the ibdev() function that finds a GPIB
device by address. That makes the Linux Lab Project driver the only one that does not provide such an inter-
face, so it is easier just to provide one for it. This is handled by adding to/etc/gpib.confthe contents of the file
mx/driver info/llp gpib/gpib.confaddonfrom the MX base source distribution, so that there is a way to find a given
GPIB device by its primary address. The contents of the filegpib.confaddonis shown in the following figure:

19.4 National Instruments GPIB

71

72 CHAPTER 19. GPIB

/* Devices for use with the MX Linux GPIB driver. */

device { name = gpib0.1 pad=1 sad=0 }
device { name = gpib0.2 pad=2 sad=0 }
device { name = gpib0.3 pad=3 sad=0 }
device { name = gpib0.4 pad=4 sad=0 }
device { name = gpib0.5 pad=5 sad=0 }
device { name = gpib0.6 pad=6 sad=0 }
device { name = gpib0.7 pad=7 sad=0 }
device { name = gpib0.8 pad=8 sad=0 }
device { name = gpib0.9 pad=9 sad=0 }
device { name = gpib0.10 pad=10 sad=0 }
device { name = gpib0.11 pad=11 sad=0 }
device { name = gpib0.12 pad=12 sad=0 }
device { name = gpib0.13 pad=13 sad=0 }
device { name = gpib0.14 pad=14 sad=0 }
device { name = gpib0.15 pad=15 sad=0 }
device { name = gpib0.16 pad=16 sad=0 }
device { name = gpib0.17 pad=17 sad=0 }
device { name = gpib0.18 pad=18 sad=0 }
device { name = gpib0.19 pad=19 sad=0 }
device { name = gpib0.20 pad=20 sad=0 }
device { name = gpib0.21 pad=21 sad=0 }
device { name = gpib0.22 pad=22 sad=0 }
device { name = gpib0.23 pad=23 sad=0 }
device { name = gpib0.24 pad=24 sad=0 }
device { name = gpib0.25 pad=25 sad=0 }
device { name = gpib0.26 pad=26 sad=0 }
device { name = gpib0.27 pad=27 sad=0 }
device { name = gpib0.28 pad=28 sad=0 }
device { name = gpib0.29 pad=29 sad=0 }
device { name = gpib0.30 pad=30 sad=0 }
device { name = gpib0.31 pad=31 sad=0 }

Figure 19.1:gpib.confaddonfor the MX Linux Lab Project GPIB driver

Chapter 20

CAMAC

20.1 DSP6001

20.2 Soft CAMAC

73

74 CHAPTER 20. CAMAC

Chapter 21

VME

21.1 EPICS VME

21.2 National Instruments VXI Memacc

21.3 Struck SIS-1100 and SIS-3100

75

76 CHAPTER 21. VME

Chapter 22

Port I/O

22.1 DriverLINX Port I/O

This MX driver is an interface to the DriverLINX port I/O driver for Windows NT/98/95 written by Scientific Software
Tools, Inc. The DriverLINX package may be downloaded from http://www.sstnet.com/dnload/dnload.htm. This
driver is primarily intended for use under Windows NT, since the ’dosportio’ driver already handles Windows 98/95,
but it should work on all three operating systems.

Warning: These drivers have not yet been tested with Windows 2000 or Windows XP.

22.2 MSDOS Port I/O

22.3 Linux iopl() and ioperm() drivers

22.4 Linux portio driver

77

78 CHAPTER 22. PORT I/O

Chapter 23

Variables

23.1 EPICS Variables

23.2 Inline Variables

23.3 Network Variables

23.4 PMAC Variables

79

80 CHAPTER 23. VARIABLES

Chapter 24

Servers

24.1 TCP/IP Servers

81

82 CHAPTER 24. SERVERS

Chapter 25

Scans

25.1 Linear Scans

25.1.1 Input Scans

25.1.2 Motor Scans

25.1.3 Pseudomotor Scans

25.1.4 Slit Scans

25.1.5 Theta-Two Theta Scans

25.2 List Scans

25.2.1 File List Scans

25.3 XAFS Scans

25.4 Quick Scans(also known as Fast or Slew Scans)

25.4.1 Joerger Quick Scans

25.4.2 MCS Quick Scans

83

84 CHAPTER 25. SCANS

Chapter 26

Interfaces to Other Control Systems

26.1 EPICS

26.2 SCIPE

85

86 CHAPTER 26. INTERFACES TO OTHER CONTROL SYSTEMS

Chapter 27

Incomplete or Broken Records

There are several device drivers that were never finished for some reason or other. The source code is still maintained
in the MX driver library just in case the opportunity arises to finish the work.

27.1 Motors

27.1.1 Bruker GGCS

27.1.2 NSLS MMC32

27.2 Analog and Digital I/O

27.2.1 National Instruments LabPC+

27.3 Counter/Timers

27.3.1 Prairie Digital Model 45

27.4 RS-232

27.4.1 VMS Terminal

87

